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Abstract

Variational Monte Carlo wave functions, obtained from a realistic Hamilto-
nian consisting of the Argonne vyg two-nucleon and Urbana-IX three-nucleon
interactions, are used to calculate the ®Li ground-state longitudinal and trans-
verse form factors as well as transition form factors to the first four excited
states. The charge and current operators include one- and two-body com-
ponents, leading terms of which are constructed consistently with the two-
nucleon interaction. The calculated form factors and radiative widths are in
good agreement with available experimental data.
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(lalculations of the ®Li elastic and inelastic form factors have relied in the past on rel-
atively simple shell-model [1-3] or a-d [4] cluster wave functions. These calculations have
typically failed to provide a satisfactory, quantitative description of all measured form fac-
tors. More phenomenologically successful models have been based on a NN [5-7] clusteriza-
tion, on extensions of the basic spherical-cluster a-d model in which the deuteron is allowed
to deform [8], or on large-space multi-hw shell-model approaches [9]. However, while these
models do provide useful insights into the structure of the A=6 nuclei, their connection with
the underlying two- (and three-) nucleon dynamics is rather tenuous.

The Li form factor calculations we report on here are within the context of a realistic
approach to nuclear dynamics based on two- and three-nucleon interactions—the Argonne
v1s [10] and Urbana IX [11] interactions, respectively, or AV18/UIX model—and consistent
two-body charge and current operators [12-14]. Up until very recently, calculations of this
type were limited to the A=2-4 systems, as reviewed in Ref. [15]. Indeed, the deuteron
structure functions and threshold electrodisintegration, the trinucleon charge and magnetic
form factors, and « charge form factor have been the observables of choice for testing the
quality of interactions and associated two-body currents. However, the availability of real-
istic six-body wave functions for the ground and low-lying excited states of Li [16] makes
it now possible to extend and test our understanding of the electromagnetic structure of
nuclei in a new regime—that of p-shell nuclei- -and to verify to what extent the inability
of reproducing simultancously the observed elastic and transition form factors is due to the
inadequacy of cluster or shell-model wave functions.

The AV18/UIX model reproduces the experimental binding cnergies and charge radii
of 3H, 3He, and *He in numerically exact calculations, based on the Faddeev [17], pair-
correlated hyperspherical harmonics [18], and Green’s function Monte Carlo (GFMC) [16]
methods. For A=6 systems the GFMC results are somewhat underbound compared to the
experimental ground states, by 2% in °Li and 5% in He and ®Be. The best variational
Monte Carlo (VMC) energies are an additional 10% above the GFMC results. However, the
known excitation spectra are well reproduced by both VMC and GFMC calculations. These
include, in order of excitation, the states with spin, parity, and 1sospin assignments, (J7; 1),
of (3%; 0) (0F;1), (2+;0), and (2%;1) [16].

The variational wave function for A=6 nuclei used here is the trial wave function, ¥r,
that serves as the starting point for the GFMC calculations. It has the general form
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where U,;; and UTNI are two- and three-body correlation operators and the Jastrow wave
function |V ;) is given by
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The S and A are symmetrization and antisymmetrization operators, respectively. The
central pair and triplet correlations fi,(r;) and f; are functions of relative position only;
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the subscripts zy denote whether the particles are in the s- or p-shell. The |®¢(LSJMTT3))
is a single-particle wave function with orbital angular momentum L and spin S coupled to
total angular momentum J, projection M, isospin T, and charge state T5:

|Be( LS T MTTs)1934:56) = |4(0000)12340%> (Ras )6y, (Ras)
(Vim0 Yo (Quo)iar, X [xs(3ma)xalgmilsnss}
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Particles 1-4 are placed in an « core with only spin-isospin degrees of freedom, denoted by
®4(0000), while particles 5-6 are placed in p-wave orbitals (b’;S(Ro,k) that are functions of
the distance between the center of mass of the o core and particle k. Different amplitudes
3¢ are mixed to obtain an optimal wave function; for the (1*:0) ground state of °Li we
mix Boi, Bio, and B2, terms, while both the (3%;0) and (2%;0) states are “stretch 7states
and use only 8z;. For the (0%;1) excited state the Boo and By; amplitudes contribute, and
for (2*;1) the wave function is constructed from By and (1 terms.
The two-body correlation operator Uj; is defined as:

U;; = Z lH ffjk(rika rjk)} up(rij)o?.i ) )

p=2,6 | k#ij

=2,6 . . . .
where the Of7"" = 7,7, 040, 0 0;Ti " Tj, Sij, and Sy7; - T;. The six radial functions

f,5(r) and up=26(r) are obtained from approximate two-body Euler-Lagrange equations with

variational parameters [19]. The f;, and LS correlations are similar to fss for small sepa-

rations, but include long-range tails. The i))parameters used in constructing these two-body
correlations, as well as the description of the three-body correlation operator U};{C\H and the
operator-independent three-body correlations fi;; and [ty are given in Ref. [16].

Energy expectation values are evaluated using a Metropolis Monte Carlo algorithm [19].
The VMC results for the ground and low-lying excited states of 6Li are compared to the
GFMC and experimental energies [20] in T able 1. The ground state is underbound by nearly
5 MeV compared to experiment, and is only 0.1 MeV more bound than the corresponding
4He calculation (26.9 MeV). This is above the threshold for breakup of 6Li into an a and
a deuteron; in principle, it should be possible to lower the variational energy at least to
that threshold, but the wave function would be greatly spread out. We have chosen to
constrain our parameter search to keep the rms point-nucleon radius for the ground state
near the experimental value of 2.43 fm. Despite the large energy deficit compared to the
GFMC calculation, the VMC and GFMC one-body densities in ®Li are virtually identical.
However, the two-body GFMC densities are somewhat larger near their peak at ry; ~ 1
fm [16].

The nuclear charge and current operators consist of one- and two-body terms. We here
summarize their most important features, and refer the reader to Refs. [15,21] for a listing
of the explicit expressions. The two-body current operator has “model-independent "and
“model-dependent ”components, in the classification scheme of Riska [22]. The model-
independent terms are obtained from the charge-independent part of the AVIS, and by
construction [23] satisfy current conservation with this interaction. The leading operator
is the isovector “m-like "current obtained from the isospin-dependent spin-spin and tensor
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interactions. The latter also generate an isovector “p-like ”current, while additional model-
independent isoscalar and isovector currents arise from the isospin-independent and isospin-
dependent central and momentum-dependent interactions. These currents are short-ranged
and numerically far less important than the m-like current.

The model-dependent currents are purely transverse and therefore cannot be directly
linked to the underlying two-nucleon interaction. The present calculation includes the
isoscalar pry and isovector wmy transition currents as well as the isovector current associated
with excitation of intermediate A-isobar resonances. The pmy and wmy couplings are known
from the measured widths of the radiative decays p — mv [24] and w — 77 [25], respectively,
while their momentum-transfer dependence is modeled using vector-meson-dominance. The
M1 vNA coupling is obtained {rom an analysis of YN data in the A-resonance region [26].
Monopole form factors are introduced af the meson-baryon vertices with cutoff values of
A,=3.8 fm~! at the 7NN and 7 NA vertices and A,=A,=6.3 fm~" at the pNN and wNN
vertices.

While the main parts of the two-body currents are linked to the form of the two-nucleon
interaction through the continuity equation, the most important two-body charge operators
are model-dependent, and should be considered as relativistic corrections. Indeed, a consis-
tent calculation of two-body charge effects in nuclei would require the inclusion of relativistic
effects in both the interaction models and nuclear wave functions. Such a program is just at
its inception for systems with A > 3. There are nevertheless rather clear indications for the
relevance of two-body charge operators from the failure of the impulse approximation (IA)
in predicting the charge form factors of the threc- and four-nucleon systems [15]. The model
commonly used [13,15] includes the m-, p-, and w-meson exchange charge operators with
both isoscalar and isovector components, as well as the (isoscalar) pmy and (isovector) wmy
charge transition couplings, in addition to the single-nucleon Darwin-Foldy and spin-orbit
relativistic corrections. It should be emphasized, however, that for g<5 fm~! the contribu-
tion due to the m-exchange charge operator is typically an order of magnitude larger than
that of any of the remaining two-body mechanisms and one-body relativistic corrections.

We have calculated longitudinal F1,(¢) and transverse F'r(q) form factors of the 5Li ground
state as well as transitions from this to the first four excited states. The Coulomb (CJ)
multipoles contributing to Fr(q) are obtained from matrix elements of the charge operator,
p(q), while the electric (EJ) and/or magnetic (MJ) multipoles contributing to Fr(q) are
obtained from matrix elements of the current operator, j(q), using standard formulas [27]).

Our elastic form factors Fr(q) and Fr(q) are compared with the experimental val-
ues [8,28-30] in Fig. 1. Since the 6, ground state is (17;0), both C0 and C2 multipoles
contribute to Fr.(g), while only the M1 operator contributes to Fr(q). The results obtained
in both IA and with inclusion of two-body corrections in the charge and current operators
(IA+MEC) are displayed, along with the statistical errors associated with the Monte Carlo
integrations. The Fi(q) is In excellent agreement with experiment; in particular, the two-
body contributions (predominantly due to the m-like charge operator) shift the minimum to
lower values ol g, consistent with what has been found for the charge form factors of the
hydrogen and helium isotopes [15]. The C2 contribution is much smaller than CO below
3 fm~!, as shown in Fig. 1, and at low ¢ is proportional to the ground state quadrupole
moment. Our prediction for the latter is —0.23(9) fm?, larger (though with a 50% statistical
error) in absolute value than the measured value of —0.08 fm?, but with the correct (nega-



tive) sign. Cluster models of the ®Li ground state generally give large, positive values for the
quadrupole moment, presumably due to the lack of D-waves in the «, and the consequent
absence of destructive interference between these and the D-wave in the a-d relative mo-
tion [7]. For ¢ > 3 fm~', the C2 contribution becomes dominant, and the shoulder seen in
the data is entirely due to this component, which has frequently been omitted from cluster
models.

The experimental Fr(q) is well reproduced by our calculations in the first peak at ¢ =
0.5 fm~!, but the zero comes a little too early and the second peak at ¢ = 2 fm™! is
somewhat overpredicted. Since the °Li ground state has T=0, only isoscalar two-body
currents contribute to Fr(q); the associated contributions are small at low ¢, but increase
with ¢, becoming significant for g > 3 fm~!, beyond the range of present data. The calculated
magnetic moment is 0.829 py in IA and 0.832 uy with two-body currents, about 1% larger
than the experimental value, which is close to that of a free deuteron.

The calculated longitudinal inelastic form factor to the (3%:0) state is found to be in
excellent agreement with experiment [29,31,32], as shown in Fig. 2. This transition is induced
by €2 and (4 operators, and thus the associated form factor Fy(g) behaves as ¢* at low
g. The two-body contributions only become important for g > 2 fm~!, but do improve the
agreement with data. We also show our prediction for the much smaller transverse form
factor Fir(g). The calculated radiative width of the (3+:0) state is 3.38(9)x10~* eV in both
IA and with MEC, compared to the experimental value of (4.40 £ 0.34)x107* eV [33].

Good agreement is also found with the experimental values [3,32] for the transverse
inelastic form factor to the state (07;1), as shown in Fig. 2. This is an isovector magnetic
dipole transition and, as expected, is significantly influenced, even at low values of g, by
two-body contributions, predominantly by those due to the m-like current operator. The
predicted radiative width is 7.49(2) eV in IA and 9.06(7) eV including MEC, compared with
the experimental value 8.19 £0.17 eV. Thus the isovector two-body current contributions
increase the y-width by 20%.

The calculated longitudinal and transverse inelastic form factors to the (21;0) state are
also shown in Fig. 2. The contributing multipole operators are C2 for the longitudinal
transition, and M1, E2, and M3 for the transverse transition. The Fp(q) is comparable in
magnitude to that for the (3%;0) state, but has not been measured to date; the Fr(q) is
again much smaller. The corresponding y-width is calculated at 8.0(5)x1073 eV both in IA
and with MEC. This result just overlaps the experimental value of (5.4 + 2.8)x107% eV [33].

Finally, we show the inelastic form factors to the (2%;1) state. For this isovector tran-
sition, the Fr(q) is much larger than the Fi(q). The experimental data [4,32,33] are well
reproduced by the calculation, with the two-body currents contributing significantly at all
q values. However the calculated ~-width of 0.050(9) eV in IA and 0.075(26) eV with MEC
is several times smaller than the reported experimental value of 0.27 & 0.05 eV.

To summarize, we have presented the first ab initio microscopic calculations of °Li elastic
and transition form factors, based on six-body VMC wave functions obtained from realistic
interactions and a consistent, realistic nuclear electromagnetic current operator. We do
not expect that use of the more accurate GFMC wave functions will lead to significantly
different predictions, since the VMC and GFMC one- and two-body densities have been
found to be quite close [16]. Inclusion of the contributions from two-body charge and current
operators brings theory into significantly better agreement with the experimental data. Thus



nuclear many-body theory appears to provide a quantitatively satisfactory description of
the electromagnetic structure of both s- and p-shell nuclei for a wide range of momentum
transfers.
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TABLES

TABLE L. Binding energy, B, and excitation energy, AF, of °Li states in MeV.

VMC GI'MC Expt
JT B AFE B AF B AF
2t 1 21.5(1) 5.5(1) 25.5(1) 5.7(1) 26.62 5.37
2+:0 22.6(1) 4.4(1) 26.8(3) 4.4(4) 27.68 4.31
0*:1 23.2(1) 3.8(1) 27.3(1) 3.9(1) 28.43 3.56
30 24.0(1) 3.0(1) 28.5(3) 2.7(3) 29.80 2.19
1+;0 27.0(1) — 31.2(1) 31.99 —
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FIGURES

FIG. 1. Calculated longitudinal and transverse elastic form factors of the 6Li ground state
are shown in impulse approximation (IA) and with two-body charge and current operators added
(IA+MEC) as filled symbols with Monte Carlo statistical error bars. The Coulomb monopole (C0)
and quadrupole (C2) contributions to the longitudinal form factor are also shown by the dashed
(IA) and solid (IA+MEC) lines. Data are from Refs. [8,28-30].

FIG. 2. Calculated longitudinal and transverse transition form factors to the first four (J7T)
excited states of 8Li are shown in impulse approximation (IA) and with two-body charge and
current operators added (IA+MEC). The largest form factor in each case is shown as a point
with its statistical error bars; the smaller form factor (if any) is shown by dashed (IA) and solid
(IA+MEC) lines. Data are from Refs. [3,4,29,31 33].
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Fig.2 Wiringa & Schiavilla
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